Fungal siderophore metabolism with a focus on Aspergillus fumigatus
نویسنده
چکیده
Siderophores are chelators synthesized by microbes to sequester iron. This article summarizes the knowledge on the fungal siderophore metabolism with a focus on Aspergillus fumigatus. In recent years, A. fumigatus became a role model for fungal biosynthesis, uptake and degradation of siderophores as well as regulation of siderophore-mediated iron handling and the elucidation of siderophore functions. Siderophore functions comprise uptake, intracellular transport and storage of iron. This proved to be crucial not only for adaptation to iron starvation conditions but also for germination, asexual and sexual propagation, antioxidative defense, mutual interaction, microbial competition as well as virulence in plant and animal hosts. Recent studies also indicate the high potential of siderophores and its biosynthetic pathway to improve diagnosis and therapy of fungal infections.
منابع مشابه
Fungal siderophore biosynthesis is partially localized in peroxisomes
Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein-tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl-CoA ligase), SidH (mevalonyl-CoA hydratase) and SidF (...
متن کاملDifferential expression of genes involved in iron metabolism in Aspergillus fumigatus.
The ability of fungi to survive in many environments is linked to their capacity to acquire essential nutrients. Iron is generally complexed and available in very limited amounts. Like bacteria, fungi have evolved highly specific systems for iron acquisition. Production and uptake of iron-chelating siderophores has been shown to be important for certain human bacterial pathogens, as well as in ...
متن کاملIron homeostasis—Achilles’ heel of Aspergillus fumigatus?
The opportunistic fungal pathogen Aspergillus fumigatus adapts to iron limitation by upregulation of iron uptake mechanisms including siderophore biosynthesis and downregulation of iron-consuming pathways to spare iron. These metabolic changes depend mainly on the transcription factor HapX. Consistent with the crucial role of iron in pathophysiology, genetic inactivation of either HapX or the s...
متن کاملThe MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus
The saprophytic fungus Aspergillus fumigatus is the most important air-borne fungal pathogen. The cell wall of A. fumigatus has been studied intensively as a potential target for development of effective antifungal agents. A major role in maintaining cell wall integrity is played by the mitogen-activated protein kinase (MAPK) MpkA. To gain a comprehensive insight into this central signal transd...
متن کاملSiderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence
The ability to acquire iron in vivo is essential for most microbial pathogens. Here we show that Aspergillus fumigatus does not have specific mechanisms for the utilization of host iron sources. However, it does have functional siderophore-assisted iron mobilization and reductive iron assimilation systems, both of which are induced upon iron deprivation. Abrogation of reductive iron assimilatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 31 شماره
صفحات -
تاریخ انتشار 2014